Применение на практике

Для примера, рассмотрим инверторный аппарат TELWIN Force 165. Во входном выпрямителе используются диодные сборки GBPC3508. Выпрямительный мост GBPC3508 может работать с током 35 А, обратное напряжение – 800 В.

С ним вместе идет обязательно сглаживающий фильтр из конденсаторов большой емкости. Кроме этого имеется фильтр электромагнитной совместимости, который не пропускает помехи от инвертора в бытовую сеть.

На выходе инвертора используются мощные сдвоенные диоды с общим катодом. Они имеют высокое быстродействие в отличие от диодов расположенных на входе устройства.

Благодаря малому времени восстановления, менее 50 наносекунд, приборы успевают переключать высокочастотный ток на выходе вторичной обмотки.

В данном приборе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN или VS-60CPH03, рассчитаны на прямой ток 30 ампер на один прибор (60 ампер на оба) и обратное напряжение 300 вольт.

Устанавливаются на радиатор. Для защиты полупроводников от перегрузки используется RC фильтр. Схема управления требует стабильный источник питания без бросков напряжения.

Для этого в приборе предусмотрены стабилитроны или уже готовый интегральный стабилизатор, которые обеспечивают стабильное питание на микросхемах управления. В результате получается компактное устройство, позволяющее качественно варить металл.

Добавляем выпрямитель

Самодельный мощный сварочный трансформатор с точки зрения схемотехники — обычный блок питания. Соответственно выпрямитель устроен так же просто, как в сетевом заряднике для мобильного телефона. Только элементная база будет выглядеть на несколько порядков массивнее.

Как правило, в простую схему из диодного моста добавляют пару конденсаторов, гасящих импульсы выпрямленного тока.

Можно собрать выпрямитель и без них, но чем ровнее ток, тем качественней получается сварочный шов. Для сборки собственно моста применяются мощные диоды типа Д161–250(320). Поскольку при нагрузке на элементах выделяется много тепла, его нужно рассеивать с помощью радиаторов. Диоды крепятся к ним с помощью болтового соединения и термопасты.

Разумеется, ребра радиаторов должны либо обдуваться вентилятором, либо выступать над корпусом. Иначе вместо охлаждения они будут греть трансформатор.

Принципы синхронного выпрямления

Для правильного выбора транзисторов синхронного выпрямителя необходимо четкое понимание механизма возникновения потерь. В первую очередь необходимо различать потери проводимости (статические потери), зависящие от тока нагрузки, и потери переключения (динамические потери). Потери проводимости напрямую зависят от сопротивления транзисторов в открытом состоянии RDS(on) и падения напряжения на внутренних диодах VSD. Причем увеличение тока нагрузки приводит к увеличению потерь проводимости. Для предотвращения одновременного включения транзисторов синхронного выпрямителя, приводящего к токовым перегрузкам транзисторов, необходимо наличие некоторого времени задержки, при котором один транзистор должен быть гарантированно закрыт перед открытием другого. Именно в этот промежуток времени ток протекает через внутренний диод, и в нем возникают дополнительные потери. Но, поскольку этот период мал (50…100 нс), то в большинстве случаев, когда выходное напряжение значительно больше прямого падения напряжения на внутреннем диоде, данными потерями можно пренебречь.

Рис. 1. Схемы диодного и синхронного выпрямителей

Динамические потери MOSFET также вносят большой вклад в общую картину. Они зависят от частоты коммутации fSW и выходного тока преобразователя IOUT. Для включения транзистора емкость затвора необходимо зарядить до величины Qg, а напряжение на затворе должно достигнуть порога переключения. Для выключения MOSFET емкость «затвор-исток» должна быть разряжена, что означает рассеивание заряда Qg на сопротивлении затвора и внутреннем сопротивлении драйвера. При существующей технологии производства потери управления для транзисторов с малым сопротивлением канала – больше, чем для высокоомных, поскольку увеличение размера кристалла приводит к увеличению заряда затвора Qg.

Другая важная часть динамических потерь связана с наличием выходной емкости Coss и зарядом обратного восстановления Qrr. При выключении транзистора заряд Qrr должен быть рассеян, а выходная емкость Coss заряжена до величины напряжения вторичной обмотки трансформатора VT. В результате этого процесса возникает импульс обратного тока, который протекает через индуктивности коммутируемой цепи, вследствие чего в выходную емкость транзистора передается энергия, приводящая к появлению на стоке транзистора импульса перенапряжения. Этот импульс запускает колебательный процесс в контуре, образованном индуктивностями проводников печатной платы и выходной емкостью транзистора Coss, который демпфируется паразитными сопротивлениями данного контура. Таким образом, энергия выключения зависит от величины емкости Coss MOSFET и, соответственно, от заряда Qoss, накопленного при заряде Coss до напряжения вторичной обмотки трансформатора. Аналогично заряду затвора Qg, заряд выходной емкости Qoss увеличивается с уменьшением сопротивления RDS(on). Таким образом, всегда можно найти баланс между потерями проводимости и потерями на переключение для достижения максимальной эффективности преобразования в целом.

В первом приближении зарядом обратного восстановления Qrr для транзисторов серии OptiMOS можно пренебречь, поскольку его вклад в общие потери мощности незначителен. В нашем случае зарядом Qrr считается только заряд восстановления внутреннего диода MOSFET, в то время как величина заряда Qrr, которая указывается в документации, измеряется в соответствии со стандартами JEDEC, и поэтому содержит не только заряд восстановления внутреннего диода, но и некоторые составляющие выходного заряда транзистора. К тому же, при синхронном выпрямлении реальные значения заряда обратного восстановления диода Qrr – меньше значений, указанных в документации. В ней приводятся значения для максимально допустимого тока стока транзистора при условии, что диод находился в проводящем состоянии длительное время, более 500 мкс, и при ограниченной скорости изменения тока di/dt на уровне 100 А/мкс. В реальном устройстве токи транзистора обычно не превышают трети максимально допустимого тока стока, внутренний диод находится в проводящем состоянии 20…100 нс, а скорость изменения тока di/dt достигает 800 А/мкс.

Выбор полевых транзисторов по четырехквадрантным оптимизирующим зависимостям для синхронного выпрямления

Для выбора транзисторов предлагаются оптимизирующие зависимости, которые позволяют легко отыскать наиболее подходящий полевой транзистор для синхронного выпрямителя с использованием всего трех параметров: напряжения вторичной обмотки трансформатора, частоты преобразования и среднего значения тока транзистора. Пример выбора транзистора показан на рисунке 6.

Рис. 6. Выбор транзистора по оптимизирующим зависимостям

На первом этапе необходимо выбрать один из транзисторов, присутствующих на графиках. Из точки на оси Х, которая соответствует напряжению вторичной обмотки трансформатора, проводят вертикальную линию вниз до пересечения с линией, соответствующей выбранному транзистору. Из этой точки проводят горизонтальную линию влево до точки пересечения с линией, соответствующей частоте преобразования. После этого проводят вертикальную линию вверх до пересечения с линией, соответствующей выбранному току транзистора. Далее из этой точки проводят горизонтальную линию вправо до пересечения с вертикальной линией, соответствующей выбранному транзистору, по которой можно определить оптимальное число параллельно соединенных транзисторов.

Обратите внимание:  Светильник и люстра из стеклянной бутылки: 3 урока

Хорошим соотношением будет уровень тока в 20…30% от полной нагрузки. Оптимальным значением RDS(on) для данного случая будет точка пересечения с положительной частью оси Y. Данную процедуру можно выполнить для разных моделей транзисторов. Наименьшие потери, а следовательно, и максимальное значение КПД выпрямителя будут при использовании тех транзисторов, для которых эквивалентное сопротивление RDS(on) будет наименьшим.

Данная методика рассчитана на работу транзисторов выпрямителя в режиме оптимального переключения. В любом другом случае, например, в случае динамического включения или лавинного пробоя, приведенные зависимости будут неточными. Наилучшие результаты были получены для топологий с жесткой коммутацией. Использование данной методики для резонансных схем с режимами мягкой коммутации приведет к большим расхождениям, поскольку в данном случае динамические потери будут ниже нуля. В этом случае оптимальное значение сопротивления RDS(on) будет меньше расчетного

Обратите внимание на то, что даже при работе первичной стороны в квазирезонансном режиме, например, при использовании мостового инвертора Phase Shift ZVS, синхронный выпрямитель может работать в режиме жесткого переключения и может быть оптимизирован с использованием приведенных зависимостей

Все оптимизирующие зависимости, приведенные в данной статье (рисунки 7…14), были построены для идеализированных полевых транзисторов. На практике результаты расчетов по идеализированным зависимостям могут отличаться от реального значения потерь. Поэтому полученные результаты необходимо рассматривать не более чем как индикатор наилучшего возможного случая или предупреждение о выборе недостаточного или избыточного количества транзисторов. Если оптимальное количество параллельно соединенных транзисторов, полученное по графикам, находится между двумя значениями, следует помнить, что выбор меньшего количества транзисторов увеличит КПД выпрямителя при меньших токах нагрузки, а большего – при больших. Кроме того, необходимо учитывать наличие снабберных цепей, включенных параллельно транзисторам, которые также могут влиять на выбор транзисторов.

Оптимизация во всем диапазоне токов нагрузки не может быть выполнена с помощью расчета при одном значении выходного тока. Для этого необходимо выполнить несколько тестовых расчетов при различных токах нагрузки, и, анализируя полученные результаты, осуществить выбор модели и количества транзисторов в соответствии с требованиями, предъявляемыми к выпрямителю.

Рис. 7. Выбор транзистора по оптимизирующим зависимостям OptiMOS 30 В

Рис. 8. Выбор транзистора по оптимизирующим зависимостям OptiMOS 40 В

Рис. 9. Выбор транзистора по оптимизирующим зависимостям OptiMOS 60 В

Рис. 10. Выбор транзистора по оптимизирующим зависимостям OptiMOS 75 В

Рис. 11. Выбор транзистора по оптимизирующим зависимостям OptiMOS 80 В

Рис. 12. Выбор транзистора по оптимизирующим зависимостям OptiMOS 100 В

Рис. 13. Выбор транзистора по оптимизирующим зависимостям OptiMOS 120 В

Рис. 14. Выбор транзистора по оптимизирующим зависимостям OptiMOS 150 В

•••

Расчет сечения проводов первичной обмотки трансформатора

Схема устройства сварочного трансформатора.

https://youtube.com/watch?v=G84TO5pbHiA

Теория трансформаторов сложна тем, что она основана на законах электромагнитной индукции и других явлений магнетизма. Однако, не используя сложный математический аппарат, можно пояснить, как работает трансформатор и можно ли его собрать самостоятельно.

Вручную трансформатор можно намотать на металлическом сердечнике, собранном из пластин трансформаторной стали. Проще выполнить намотку на стержневой или броневой сердечник, чем на тороидальный.

Сразу же следует обратить внимание, что на изображении хорошо видна разница в толщине проводов: тонкий провод расположен непосредственно на сердечнике, и в нем явно видно большее количество витков. Это первичная обмотка

Более толстый провод и с меньшим количеством витков — это вторичная обмотка.

Не учитывая потери мощности внутри трансформатора, рассчитаем, каким должен быть ток I1 в его первичной обмотке.

Идеальное напряжение сети равно U=220 В. Зная потребляемую мощность, например, P=5 кВт, имеем:

I1 = Р:U= 5000_220=22,7 А.

По току в первичной обмотке трансформатора определяем диаметр провода. Плотность тока для бытового сварочного трансформатора должна быть не более 5 А/мм2 сечения провода. Следовательно, для первичной обмотки потребуется провод сечением S1=22,7:5=4,54 мм2.

По сечению провода определяем квадрат, его диаметр d без учета изоляции:

d2=4S/π=4×4,54/3,14=5,78.

Извлекая корень квадратный, получаем d=2,4 мм. Эти расчеты выполнены для медных жил провода. При намотке проводов с алюминиевым сердечником полученный результат необходимо увеличить в 1,6-1,7 раза.

Для первичной обмотки применяют медный провод, изоляция которого должна хорошо выдерживать высокие температуры. Это стеклотканевая или хлопчатобумажная изоляция. Подойдет резиновая и резинотканевая изоляция. Провода, имеющие ПВХ изоляцию, применять не следует.

Расчет количества витков

Количество слоев для каждой обмотки определяем из величины площади сердечника по формуле K = 50 : Sс = 50/45 = 1,11 витка на один Вольт.

Внимание! В данной формуле, также, как и в первой, коэффициент 50 принят для трансформаторов с сердечниками типа П и Ш., для кольцевых сердечников будет равен 35 для, ШЛ и ШП – 40. Теперь определим величину максимального тока на первичной обмотке по формуле: Imax = P : U = 6750 : 220 = 30,71 А

На основании этих данных можно узнать количество слоев для намотки. Расчет ведется по формуле Wх =Uх * K. Для вторичной – это будет W2 = U2 х K = 60 х 1,11 = 67 витков

Теперь определим величину максимального тока на первичной обмотке по формуле: Imax = P : U = 6750 : 220 = 30,71 А. На основании этих данных можно узнать количество слоев для намотки. Расчет ведется по формуле Wх =Uх * K. Для вторичной – это будет W2 = U2 х K = 60 х 1,11 = 67 витков.

Количество слоев первичной обмотки узнаем, позже т.к. для этого необходимо применить другую формулу. Для регулировки мощности на выходе, от первичной обмотки производится несколько выводо. Количество витков для первичной намотки находим по формуле: W1ст = (U1 х W2): Uст, вит.

Где:

  • Uст – напряжение на вторичной обмотке.
  • U1 – напряжение первичной обмотки;
  • W2 – количество витков вторичной обмотки;
  • W1ст – количество первичной обмотки определенной ступени.

Но прежде необходимо рассчитать напряжение каждой ступени Uст. Для этого воспользуемся формулой U=P: I, В.

По формуле U = P : I, В. для исходного расчетного трансформатора Р= 6750 Вт, рассчитаем данные для четырех ступеней мощностью 95 А, 110 А, 135 А и 165 А., Подставив данные в формулу, получаем U1ст1=6750:95 =71 В, U1ст2=61 В, U1ст3=50 В, U1ст4=41 В.

Далее используем полученные данные для расчета намотки. По формуле W1ст = (U1 х W2): Uст, вит. получаем количество витков для каждой ступени (с округлением в большую сторону) W1ст1=(220х67): 71 =208 витка, W1ст2 = 242 W1ст3 = 295 витка, W1ст4 = 359 витков.

Прибавив к большему количеству витков значение от 6 %, получим необходимое расчетное общее количество витков первичной обмотки W1=359+18 = 377.

Наконец, рассчитаем сечение провода на первичной и вторичной обмотках. Для этого делим максимальный ток для каждой намотки на плотность тока. В результате расчета: Sвтор =165 : 3 = 55 мм2 , Sперв = 11 мм2.

В итоге расчета сварочного трансформатора, питающегося от однофазной сети U1 = 220В, мощностью 6,75кВт. получим:

Железо: П образные штампованные листы трансформаторной стали толщиной 0,5 мм Тип обмоток – круговые намотанные на каркас; Количество витков W1 =377 в., W2 = 67 в., Количество регулируемых ступеней – 4. при Iрег – 95 А, 110 А, 135 А и 165 А. Сечение провода Sвтор = 55 мм2, Sперв = 11 мм2

Сборка сердечника

Итак, провода выбраны и подготовлены. Теперь нам нужно собрать тот самый сердечник. На изображении ниже показан идеальный по всем параметрам сердечник для самодельного трансформатора. Он стержневого типа.

Для сборки вам понадобятся пластинки, изготовленные из электротехнической стали. Оптимальная толщина одной пластинки — не менее 0.35 и не более 0.55 мм. А необходимый размер сердечника (a, b, c, d на рисунке выше) рассчитывается отдельно исходя из сечения провода. Но многие умельцы выбирают размеры «на глаз». Главное, чтобы все витки поместились.

Теперь приступаем к сборке сердечника. Возьмите пластины (они должны быть Г-образными) и складывайте в том порядке, который указан на изображении ниже. Когда вы получите сердечник достаточной толщины, скрепите все пластинки по углам с помощью болтов. Обработайте пластинки с помощью надфиля. Потом изолируйте сердечник.

Виды аппаратов, их особенности

Сварочный выпрямитель своими руками

Самодельный сварочный выпрямитель нужен для эффективного питания бытовой конструкции или производственной с небольшими объёмами работ и рабочих циклов.

В промышленности применяют более мощную аппаратуру,  действия с ней, не образуют пауз во время сварки.

В этот период  происходит остывание раскалённых деталей, снижается скорость выполнения процедуры, что не  мешает для домашних приспособлений.

Эти изделия состоят из элементов:

  • трансформатора
  • конденсаторного блока
  • выпрямителя

Приступая к созданию сварочного прибора мастеру нужно определиться с направлением работ, их размерами.

От объема производства, количества соединений зависят:

  • подбор нужных электродов
  • системные параметры
  • материальная характеристика

Сборщик, подобрав нужную схему и материалы, выполнив поэтапно сборку аппарата, добьётся необходимых показателей в системе.

Контроллеры синхронного выпрямления от International Rectifier

International Rectifier выпускает семейство синхронных преобразователей IR116x. Контроллеры этого семейства (таблица 1) выпускаются в корпусе SO-8 и способны работать при питающем напряжении до 20 В. Частота коммутации в данных микросхемах составляет 500 кГц (400 кГц для IR11682SPBF), а коммутируемое внешним транзистором напряжение может достигать 200 В. Все микросхемы (за исключением IR1168/82) имеют программируемый внешним резистором минимальный коэффициент заполнения, который характеризуется минимальным временем во включенном состоянии (MOT — Minimum On Time).

Таблица 1. Контроллеры синхронного выпрямления семейства IR116x   

Наименование Корпус Макс. напряжение питания, В Макс. коммутируемое напряжение, В Частота коммутации макс, кГц Ток затвора, A Напряжение затвора, В Мин. время во включенном состоянии (MOT), нс Вход разрешения Число каналов Автомат. защита по MOT
IR1166SPBF SO-8   20   200   500   1 / -4   10,7   Програм. 250…3000   есть   1   —  
IR1167ASPBF 2 / -7   10,7   есть   —  
IR1167BSPBF 2 / -7   14,5   есть   —  
IR1168SPBF 1 / -4   10,7   750   —   2   —  
IR11662SPBF 1 / -4   10,7   Програм. 250…3000   есть   1   есть  
IR11672ASPBF 2 / -7   10,7   есть   есть  
IR11682SPBF 400   1 / -4   10,7   850   —   2   есть  
IR1169SPBF 500   1 / -4   10,7   Програм. 250…3000   есть   1   есть  

Представители семейства покрывают диапазон выходных мощностей вплоть до 500 Вт (рисунок 3). В устройствах с небольшой мощностью применяют обратноходовую топологию. Для повышенных мощностей используют резонансную полумостовую схему с синхронным выпрямлением. Микросхемы IR1168 позволяют наиболее просто строить резонансный полумостовой преобразователь, так как для этого требуется всего одна такая микросхема. Контроллер IR1169 способен также работать в прямоходовой схеме.

Рис. 3. Применение синхронных преобразователей от International Rectifier

Микросварочник

Если сфера применения ограничена спайкой медных проводов (например, при монтаже распределительных коробок), можно ограничиться конструкцией размером с пару спичечных коробков.

Выполняется на транзисторе КТ835 (837). Трансформатор изготавливается самостоятельно. Фактически — это высокочастотный повышающий преобразователь.

Трансформатор мотаем на ферритовом стержне. Две первичные обмотки: коллекторная (20 витком 1 мм), базовая (5 витков 0.5 мм). Вторичная (повышающая) обмотка — 500 витков 0.15 проволоки.

Собираем схему, припаиваем по схеме резисторную обвязку (чтобы трансформатор не перегревался на холостом ходу), аппарат готов. Питание от 12 до 24 вольт, с помощью такого аппарата можно сваривать жгуты проводов, резать тонкую сталь, соединять металлы толщиной до 1 мм.

В качестве сварочных электродов можно использовать толстую швейную иглу.

Обратите внимание:  От земли к fpv квадрокоптеру: введение

Принцип работы однофазной мостовой схемы

Процесс протекания переменного тока можно представить в виде волны, колеблющейся с определенной частотой. Это процедура очень быстрая, которую представить можно, как в один определенный момент, проходит ток сначала в одну сторону затем в другую.

В сварке специалисты добиваются, чтобы эти перемещения осуществлялись в одностороннем порядке:

  • Во вторичную обмотку трансформатора впаивают полупроводник, он осуществляет электрический пропуск в нужном направлении, что и является постоянным током. Так как переменный ток с наличием частот, своими волнами создаст паузы, которые недопустимы в рабочем процессе.
  • В схеме, припаивают электродетали в обратном направлении по отношению друг к другу, тогда, и электронный поток потечет в обратную сторону.
  • Если создать схему с парами элементов, направленных один к другому, получат поток из волн с колебанием от нулевого значения до максимального. Этот предел рассчитывают на возможность  вторичной трансформаторной обмотки.
  • Таким же способом получают колебания, снижающиеся до минимума, с момента которого начинается новый подъём. При этом вырабатывается плюс полюсного напряжения, а его минус располагается в обмотке трансформатора.
  • Эту схему применяют с наличием в устройстве вывода, чтобы не разбирать обмотку, его можно создать самостоятельной намоткой. Эта конструкция славится своей экономичностью по отношению к количеству полупроводниковых элементов.
  • Разделение обмотки на несколько участков позволяет пользоваться только её частью.
  • Наиболее удобной  и применимой у электротехников является мостовое выпрямительное сооружение. Подобный план состоит из квадрата с полупроводниками по сторонам. Одни углы у него выдают постоянный ток, другие показывают выход напряжения от трансформатора.

Этот пример имеет преимущество, он не требует создавать вывод от второй обмотки, но понадобится много полупроводниковых вентилей. Сварка будет с небольшой мощностью, для них подбирают специальных размеров электроды, и сваривают детали ограниченные в параметрах. Следует учесть, уменьшает колебания волн, при работе сварочного аппарата, параллельное включение конденсаторного приспособления.

Сварочный аппарат «Терминатор»

Сварочный трансформатор с выпрямителем постоянного тока в подсобном хозяйстве вещь очень полезная. Однако, если взять выше рассчитанный трансформатор с мощностью вторичной ступени 170 А, с потребляемой мощностью почти 7 кВт. При нынешних ценах на электроэнергию один день работы с таким аппаратом обойдётся в немаленькую сумму. При этом необходимо учитывать ещё немаловажную вещь, как пульсация электроэнергии в общей сети, особенно если это единая однофазная сеть на всю улицу (сельская электропроводка) а ведь именно там больше всего такие изделия и нужны. Отчасти эту проблему могут решить применение сглаживающих дросселей, но при недостаточной напруге в сети колебания напряжения могут доходить до 50 В.

Такие скачки не смогут сгладить даже мощные дросселя и сетевые стабилизаторы. Это отрицательно сказывается на работе бытовых приборов, например, холодильниках. И уже тогда разборок с соседями точно не миновать.

При развитии современных технологий, промышленность выпускает компактные трансформаторы. Так -как мы уже знаем параметры необходимого трансформатора, то далее будем рассматривать аппараты для применения в подсобном хозяйстве в этих пределах. Хорошо востребованные изделия московского компании «Тор» – терминатор сварочный аппарат с выпрямителем

Сварочный трансформатор «Терминатор» имеет вес 13 кг при почти профессиональных характеристиках: регулируемое разброс тока от 30 до 170А, небольшой вес и габариты, низкая цена (всего 14 тыс. руб.). Именно из -за малые веса аппарат приобрел популярность. Аппарат востребован не только в домашних, но и профессиональных работах, особенно где от сварочного оборудования требуется мобильность – переноска с одного места на другое, например, в коммунальной сфере; стройке, ремонта автотранспортного оборудования, в общем, везде, где нужно часто менять место работы.

У “Терминатора” имеется принудительная система охлаждения вентиляторами, которые регулируют мощность воздушного потока от датчиков температуры. Такая система охлаждения дает возможность использовать аппарат с 70% коэффициентом ПНВ (продолжительность непрерывного включения) это значит, что работать аппарат может из 10 минут – 7 работа, 3 отдых.

Если же произойдет перегрев обмоток, то защита отключит аппарат от нагрузки автоматически. В трансформаторе обмотки выполнены из 9 % меди, что практически исключает потери на внутреннее сопротивление. Поэтому аппарат очень экономичен.

Литература

1. Adnaan Lokhandwala. Application Note AN-1139 Design of Secondary-Side Rectification using IR1168 Dual SmartRectifierTM Control IC. International Rectifier

2. Maurizio Salato, Adnaan Lokhandwala, Marco Soldano. Application Note AN-1087 Design of Secondary Side Rectification using IR1167 SmartRectifierTM Control IC. International Rectifier

3. SMPSRM/D SWITCHMODETM Power Supply/Reference Manual. ON Semiconductor, 2002

4. IRAC27951SR IRS27951 Evaluation Board User Guide. International Rectifier, 2011

5. Datasheets на контроллеры семейства IR116x взяты на сайте http://www.irf.com/.

•••

Новый контроллер синхронного выпрямления IR1169

Контроллер IR1169 имеет характеристики, сходные с IR1166 и IR1167, но обладает рядом особенностей.

Данный контроллер способен работать не только в обратноходовых и резонансных, но и в прямоходовых преобразователях. Для прямоходовых и обратноходовых преобразователей необходима одна микросхема IR1169. Для построения резонансного преобразователя требуется две микросхемы IR1169 (рисунок 6).

Рис. 6. Полумостовой резонансный преобразователь с синхронным выпрямлением

Второй особенностью контроллеров IR1169 является наличие входа SYNC. Рассмотрим ее применение на основе резонансного преобразователя (рисунок 6). Во всех контроллерах семейства для предотвращения срабатывания транзисторов от возникающих бросков напряжения схема управления формирует минимальное время включенного состояния транзистора (MOT) и не дает включиться транзистору в течение времени tBLANK сразу после рабочего цикла (рисунок 7а). Во всех микросхемах (кроме IR1168) MOT жестко задается внешним резистором. Наличие функции SYNC позволяет с помощью внешнего сигнала контролировать состояние транзистора напрямую вне зависимости от значения MOT и tBLANK (рисунок 7). При приходе фронта сигнала SYNC времена MOT и tBLANK аннулируются. Это может быть полезно в случае, когда на выходе преобразователя произошло короткое замыкание или перегрузка: при низком выходном напряжении напряжение Vds не сможет достичь Vth3 и транзистор не сможет включиться в следующем цикле.

Рис. 7. Временные диаграммы работы IR1169 без функции SYNC (а) и с функцией SYNC (б)